Эволюция Вселенной: возможно наша цивилизация самая развития во всем космосе?
До каких пределов может расширяться наша вселенная и что, если именно наша цивилизация - самая передовая и высокоразвитая во всем космосе?
Понятно, что Вселенная не остается сейчас такой же, какой была, скажем пять миллиардов лет назад. Ещё бы, ведь 5 миллиардов лет назад даже наше Солнце ещё не сформировалось, не говоря уже о планете Земля и её обитателях. Сменяются поколения звезд, рождаются новые химические элементы. Можно ли сказать, что вселенная развивается, эволюционирует? Наверняка да. А может ли статься такое, что вершина эволюции вселенной – появление разумных существ? Возможно…
Откуда мы знаем, что Вселенная расширяется?
Итак, проблема эволюции Вселенной является центральной в естествознании. Она привлекает к себе исследователей различных специальностей и биологов особенно. Это естественно, поскольку самое главное звено в эволюции Вселенной (с точки зрения разумных существ, конечно же) – жизнь, разум. Какова их судьба в дальнейшем, в ходе эволюции Вселенной? Может быть полное исчезновение, когда вся субстанция Вселенной через миллиарды лет распадется до фотонов и нейтрино, или циклы развития Вселенной будут периодически повторяться?
Общепризнанным является тот факт, что Вселенная около 14 млрд. лет тому назад находилась в состоянии сингулярности, состоянии бесконечно большой плотности. Затем в результате Большого Взрыва она начала расширяться, и это расширение длится и в настоящее время.
Первым делом – откуда мы сейчас, по прошествию 14 миллиардов лет можем знать, что все было именно так, т.е. был “взрыв” и началось расширение вселенной? О расширяющейся Вселенной свидетельствует красное смещение длин волн света, испускаемых галактиками в связи с их удалением от наблюдателя согласно эффекта Доплера.
Это открытие американских астрономов Весто Мелвина Слайфера и Эдвина Пауэлла Хаббла не потеряло свое значение и в наше время. Обнаружено оно было так: В.М. Слайфер и Э.П. Хаббл исследовали скорости движения галактик. Они показали, что ближайшие к нам галактики во Вселенной удаляются от нас со скоростями от нескольких сотен до тысяч км/с., а скорости галактик во Вселенной возрастают с увеличением расстояний до них.
Это доказывает тот факт, что удаляющиеся галактики движутся по расширяющейся спирали (в искривлении их траекторий повинны силы тяготения) и наблюдается эффект, напоминающий вращательное движение тела – угловые скорости материальных точек (галактик) на различном удалении от оси вращения (в данном случае от наблюдателя) равны, а линейные возрастают пропорционально увеличению расстояния от наблюдателя (R2/R1). Иными словами, галактики (и вся материя) ведут себя так, будто разлетаются в разные стороны из некого исходного центра. Зная скорость, не трудно рассчитать время, и прочие начальные данные.
До каких пределов Вселенная будет расширятся?
Но, насколько долгим может быть процесс расширения вселенной?
Согласно релятивистской теории тяготения Альберта Эйнштейна и учения советского ученого Александра Александровича Фридмана о нестационарности Вселенной, разбегающиеся галактики тормозятся силами гравитации.
Было рассчитано с использованием уравнения Э. Хаббла, что если плотность вещества во вселенной равна 10–29 г/см3 (так называемая критическая плотность), то сил гравитации во Вселенной достаточно, чтобы ее расширение было заторможено, и согласно теории А. Фридмана сменилось на обратный процесс – концентрацию галактик под влиянием сил тяготения.
Однако астрофизические расчеты показали, что плотность вещества во Вселенной ниже критической и составляет примерно 3,0·10–31 г/см3. Если это так, то Вселенная обречена на бесконечное расширение.
Впрочем, точку тут ставить рано. В настоящее время высказываются мнения, что учтена не вся масса во Вселенной, и что имеется еще так называемая «скрытая масса». Предположительно это может быть реликтовое нейтринное излучение. Однако последние работы в этой области не подтверждают эту гипотезу.
При изучении данной проблемы обращает на себя внимание тот факт, что при разработке вопросов Механики Вселенной космологи прошлого и настоящего рассматривают астрофизические объекты только как источники гравитации, не учитываются процессы, происходящие в этих объектах, энергию их излучения. А она-то и составляет скрытую массу во Вселенной, поскольку энергия эквивалентна массе: Е = mс2.
Подсчитано, что 90…95% массы галактик сосредоточено в звездах. Рассчитано, что полная энергия излучения Солнца Е0 равна 3,826·1026 Дж/с. Наша Галактика Млечный Путь обладает излучением приблизительно 1010 Е0, т.е. 3,826·1036 Дж/с.
Если бы галактика была неподвижна во Вселенной, то излучаемая ею энергия оказывала бы на нее со всех сторон одинаковое воздействие. Но поскольку галактики во Вселенной движутся по инерции после Большого Взрыва, то воздействие излучения, по нашему мнению, на разные стороны «шара» будет разным согласно эффекта Доплера. Против направления движения оно будет большим, поскольку происходит смещение спектра излучения в фиолетовую область. Перемещающиеся в пространстве Вселенной галактики – это своего рода “самотормозящиеся ракеты”.
Ближайшей от нашей галактики Млечный Путь считается галактика Туманность Андромеды. О расстоянии до этой галактики и ее лучевой скорости, а также знаке этой скорости в литературе имеются противоречивые данные, что, как выяснилось в последнее время, связано с особенностью движения Солнца в нашей Галактике.
Можно использовать Туманность Андромеды как гипотетическую модель ближайшей гигантской галактики для иллюстрации нашей идеи нового подхода к динамике процессов в Механике Вселенной, поскольку силы реактивного торможения не носят всеобщего характера, они строго индивидуальны для каждой галактики.
Галактики удаляются друг от друга… чтобы потом начать сближаться?
По последним данным, расстояние до Туманности Андромеды от нашей Галактики равно 0,67 Мпк или 2,1·1022 м. Ее масса равна 3,0·1011 М0 или 6,0·1041 кг, энергия излучения составляет 6,0·1010 Е0 или 2,14·1037 Дж/с.
Поскольку по вопросу лучевой скорости Туманности Андромеды мнения еще не определились, для нашей гипотетической модели при ее вычислениях мы используем уравнение Э. Хаббла: V = HR, где Н – постоянная Хаббла, равная по усредненным данным 75 км/с. Мпк, R – расстояние до изучаемого объекта – 0,67 Мпк. Подставляем эти значения в уравнение и получаем: V = 75·0,67 = 50,25 (км/с). Это скорость удаления Туманности Андромеды от нашей Галактики.
В последующих расчетах мы попытаемся определить отрезок времени, необходимый для торможения галактик за счет реактивной энергии излучения, после которого начнется их сближение. Для этих целей использовали уравнения классической физики, которые, по мнению А. Эйнштейна, используются при скоростях движения много меньших скорости света.
Рассчитаем энергию, расходуемую на самоторможение галактики Туманность Андромеды. Для этой цели мы предлагаем использовать уравнения, приведенные Дж. Ориром для иллюстрации эффекта Доплера:
- fA = fB (источник удаляется)
- fA = fB (источник приближается)
В этих уравнениях fA – число импульсов в секунду, регистрируемых детектором; fB – число импульсов в секунду, испускаемых объектом; V – скорость объекта, с – скорость света.
В данные уравнения вместо числа импульсов подставляем энергию излучения Туманности Андромеды, деленную на 4, поскольку излучение, нормальное к плоскости галактики по ходу и против ее движения составляет 25% от энергии полного излучения.
Определяем величину мощности энергии излучения галактики Туманность Андромеды, которая расходуется на ее торможение в пространстве против хода ее движения (при скорости 50,25 км/с).
Объект удаляется:
- Е1 = (2,14/4)·1037 · v{[1 – (50,25 / 3·105)] / [1 + (50,25 / 3·105)]} = 0,53491·1037 (Дж/с)
Объект приближается:
- Е2 = (2,14/4)·1037 · v{[1 + (50,25 / 3·105)] / [1 – (50,25 / 3·105)]} = 0,53508·1037 (Дж/с)
- ?Е1 = Е2 – Е1 = 0,53508·1037 – 0,53491·1037 = 0,00017·1037 = 1,7·1033 (Дж/с).
Данная величина мощности энергии излучения ?Е1 ежесекундно расходуется на торможение галактики Туманность Андромеды.
Очевидно, чтобы галактики Млечный Путь и Туманность Андромеды начали сближаться, необходимо снижение скорости удаления галактики Туманность Андромеды несколько ниже 2-й космической скорости по отношению к галактике Млечный Путь. Рассчитаем эту скорость:
- V = v(2GM / R) = v[(2 · 6,67·10–11 · 2,8·1041) / 2,07·1022] = 42,48 (км/с).
где G – гравитационная постоянная, М – масса галактики Млечный Путь, R – расстояние между галактиками.
Таким образом, настоящая скорость движения галактики Туманность Андромеды выше ее 2-й космической скорости на 7,77 км/с.
Определим теперь величину мощности энергии излучения галактики Туманность Андромеды, которая будет расходоваться на торможение в пространстве против хода ее движения при скорости 42,48 км/с.
- Е3 = (2,14·1037/4) · v{[1 – (42,48 / 3·105)] / [1 + (42,48 / 3·105)]} = 0,53492·1037 (Дж/с)
- Е4 = (2,14·1037/4) · v{[1 + (42,48 / 3·105)] / [1 – (42,48 / 3·105)]} = 0,53507·1037 (Дж/с)
- ?Е2 = Е4 – Е3 = 0,53507·1037 – 0,53492·1037 = 0,00015·1037 = 1,5·1033 (Дж/с).
Рассчитаем, какова будет в среднем мощность энергии излучения галактики Туманность Андромеды, расходуемая на ее торможение от 52,25 км/с до 42,48 км/с.
- ?Еср. = (?Е1 + ?Е2) / 2 = (1,7·1033 + 1,5·1033) / 2 = 1,6·1033 (Дж/с).
Рассчитаем кинетическую энергию галактики Туманность Андромеды при скоростях 52,25 и 42,48 км/с.
- W1 = mV12 / 2 = (6,0·1041 · 502502) / 2 = 7,57·1050 Дж
- W2 = mV22 / 2 = (6,0·1041 · 424802) / 2 = 5,41·1050 Дж
- ?W = W1 – W2 = (7,57 – 5,41)·1050 = 2,16·1050 (Дж)
Таким образом, кинетическая энергия Туманности Андромеды при снижении скорости с 50,25 до 42,48 км/с уменьшается на 2,16·1050 Дж.
Теперь, зная затраты энергии на торможение галактики Туманности Андромеды от 50,25 до 42,48 км/с и располагая средней мощностью реактивной энергии торможения ?Еср./c, мы можем рассчитать величину отрезка времени, необходимого для снижения скорости галактики до 2-й космической скорости.
- t = ?W / ?Eср. = 2,16·1050 / 1,6·1033 = 1,35·1017 (с) = 4,3·109 (лет)
Следует также принять во внимание, что разбегание галактик сдерживают также силы тяготения, хотя их и недостаточно. Определим вклад сил тяготения в торможение галактики Туманность Андромеды.
Для этого определим среднюю величину ускорения, создаваемого энергией реактивного торможения (а1):
- а1 = (VK – VH) / t = (42,48 – 50,25) / 1,35·1017 = –5,75·10–17 (км/с2)
Сделаем допущение, что в пространстве существуют только две галактики – наша и Туманность Андромеды. Определим ускорение замедления движения галактики Туманность Андромеды, создаваемое силами тяготения галактики Млечный Путь (а2) в настоящее время:
- а2 = –GM / R2 = (6,67·10–11 · 2,8·1041) / (2,1·1022)2 = –4,23·10–17 (км/с2)
Однако реальное ускорение в 33 раза меньше этой величины (сказывается взаимовлияние сил тяготения других галактик Вселенной), т.е. во столько же раз, как и соотношение плотности материи Вселенной ?кр / ?расч. согласно уравнениям Э. Хаббла.
Таким образом, вклад сил тяготения в торможение галактик невелик, и основную роль в этом отношении выполняют силы реактивного торможения за счет внутренней энергии галактик.
При сближении галактик силы реактивного излучения будут выполнять тормозную функцию. Таким образом, подтверждается теория А. Эйнштейна, что наряду с силами Всемирного тяготения существуют силы космического отталкивания между телами. Как показали наши расчеты, такая сила отталкивания создается за счет энергии излучения звездных систем.
Таким образом, расчеты показывают, что расширение Вселенной не бесконечно. В результате реактивного самоторможения галактик за счет их внутренней энергии происходит замедление их скоростей движения в пространстве Вселенной после Большого Взрыва. И через расчетное время они начнут сближаться.
Ритм пульса Вселенной
Поскольку звездные системы в большом масштабе рассеяны равномерно, то и сближение их будет происходить синхронно. Предполагаем, что это будет осуществляться в соответствии с рассмотренной моделью на примере галактик Млечный Путь и Туманность Андромеды.
Все это означает, что Вселенная претерпевает определенные этапы в своем развитии, и что нынешнее ее состояние не бесконечно.
С момента Большого Взрыва прошло около 14 млрд. лет. Солнце, Земля и др. планеты Солнечной системы образовались примерно 5 млрд. лет назад. Первые признаки жизни на Земле датируются возрастом 4 млрд. лет, а возникновение человека пятьюстами тысячелетий. История Земной цивилизации насчитывает 5…10 тысячелетий.
Таким образом, с момента Большого Взрыва во Вселенной до возникновения разума на Земле прошло примерно 12,5 млрд. лет. Если предположить, а это, по-видимому, верно с большой степенью вероятности, что все процессы во Вселенной идут синхронно, что жизнь и разум во Вселенной широко распространены, и что особенно важно подчеркнуть, они находятся на такой же стадии и уровне развития, как и на Земле. С этих позиций можно разрешить загадку парадокса Ферми и его уравнения, в котором иллюстрируется вероятность встречи землян с разумными существами Вселенной. Ферми предложил уравнение экспоненциального роста технологической цивилизации за время существования Вселенной:
K = exp (T / t) = 1043000000, где Т = 1010 лет (время возникновения нынешнего состояния Вселенной), t = 100 лет (время экспоненциального развития современного уровня цивилизации).
Согласно этому уравнению нашу планету должны были бы посещать разумные обитатели других миров бесконечное число раз. Сразу же заметим, что это было бы справедливо, если бы жизнь, разум в различных частях Вселенной возникали в различное время.
Если принять во внимание наше предложение, что все процессы во Вселенной происходят синхронно, то тогда напрашивается вывод, что наши собратья по разуму в других мирах находятся на такой же стадии и уровне развития, как и мы. Человек еще только через 10…15 лет достигнет Марса, и чтобы выйти за пределы Солнечной системы и осваивать нашу галактику человечеству понадобятся еще тысячелетия.
Таким образом, может статься, что ожидая встречи с некой “высокоразвитой космической цивилизацией”, мы рискуем никогда с ней не встретится. Да-да, по той самой причине, что мы и можем оказаться самой высокоразвитой цивилизацией во Вселенной на этот момент времени.
Источник оригинальной статьи: http://www.outer-space.ru/