Что такое «Большой взрыв», правда ли, что Вселенная родилась из крошечной точки и как люди смогли заглянуть в далекое прошлое нашего мира.

Теория «большого взрыва» – теория о расширяющейся вселенной, это одна из самых странных и захватывающих теорий, которую вообще придумало человечество. Эта история появления нашей Вселенной и всего того, что нас окружает, хотя и звучит очень просто, но при этом настолько невероятна, что даже воспринять её всерьез (я не говорю о том, чтобы осмыслить в полной мере) – уже само по себе не простая задача.

Однако, хотя Теория большого взрыва невероятна как фантастический рассказ, на данный момент – это самая “стройная” из теорий, которой мы мы располагаем для объяснения того откуда появился привычный нам мир с незыблемыми законами физики.

«Большой Взрыв» вселенной с точки зрения художника

Вот как-то так принято иллюстрировать «Большой Взрыв». Получается что-то типа «обратной черной дыры» – в ту, все попадает и непонятно куда девается, а здесь – из малюсенькой точки вывалилось столько всего, что непонятно, как оно там помещалось

Как была создана Теория “большого взрыва”

В 1917 г. было обнаружено, что в спектре некоторых “туманностей”, спектральные линии явственно смещены к красному концу спектра. А надо сказать, что в ту пору, как и во времена Шарля Мессье, “туманностями”, из-за не совершенства оптических приборов, именовали любые светящиеся объекты на небосклоне, имеющие неясные очертания (т.е. “туманностью” могла быть и классическая туманность и далекая галактика и звездное скопление).

Эдвин Хаббл и красное смещение галактик

Что одним и тем же термином обозначались совсем разные объекты, выяснилось лишь десятилетие спустя, когда известный американский исследователь  Эдвин Хаббл с помощью крупнейшего на то время телескопа установил, что некоторые из туманностей являются скоплениями звезд. С тех пор туманностями астрономы называют лишь разреженные облака газа и пыли. Для объектов же, «распавшихся» на звезды и оказавшихся в действительности огромными и очень далекими от нас звездными системами, придумали термин галактики.

Постепенно к началу 30-х годов сложилось мнение, что главные вещественные составляющие Вселенной — галактики, каждая из которых в среднем состоит приблизительно из ста миллиардов звезд. Солнце вместе с Солнечной системой входит в нашу Галактику “Млечный путь”, и основная масса звезд которую мы наблюдаем на небосклоне, принадлежит той же галактике. Кроме звезд и планет Галактика содержит также значительное количество разреженных газов и космической пыли.

Когда в 1929 г. Эдвин Хаббл составил сводку всех известных к тому времени данных по «красному смещению» в спектрах галактик, результат получился неожиданным. За исключением знаменитой туманности Андромеды (галактика М31) и двух других ближайших звездных систем, в спектрах остальных галактик спектральные линии были смещены к красному концу тем сильнее, чем дальше от нас находились эти галактики.

Величина красного смещения была пропорциональной расстоянию до источника излучения — такова была строгая формулировка неожиданно открытого Хабблом закона, по-простому звучавшего так – если объект удаляется от наблюдателя, его спектр смещается в красную часть, и чем дальше объект от наблюдателя, тем сильнее происходит это смещение.

Расширяющаяся вселенная – проблема не только математики, но и философии!

Если приписать «красное смещение» хорошо известному физикам принципу Доплера (частота излучения объекта изменяется тем сильнее, чем быстрее объект наблюдения движется относительно наблюдателя), то получается, что все галактики с огромными скоростями (в сотни, тысячи и десятки тысяч километров в секунду) разлетаются прочь от Земли. Иными словами, все космические объекты не стоят на месте, а постоянно удаляются друг от друга, то есть Вселенная постоянно расширяется и делает это непрерывно.



Этот вывод казался поначалу явно ошибочным. Рушились сложившиеся веками представления о спокойной, стабильной Вселенной, а главное, был непонятен физический механизм, заставляющий галактики «разбегаться» друг от друга. К этим сомнениям научного характера примешивались и возражения чисто философские.

К началу 30-х годов широкую популярность приобрела теория конечной, замкнутой Вселенной, разработанная Альбертом Эйнштейном. При некоторых упрощающих предположениях о структуре Вселенной и использовании теории относительности можно доказать, что вследствие действия гравитации трехмерное космическое пространство должно быть замкнутым, конечным, хотя и безграничным, как поверхность шара. Это, правда, только аналогия, не больше. Если Вселенную и можно назвать шаром, то шаром четырехмерным, не поддающимся наглядному представлению. В сферическом замкнутом космосе Эйнштейна количество галактик хотя и очень велико, но все же конечно. Значит, конечна и масса такой замкнутой Вселенной, как конечны ее объем и радиус.

Астроном Эдвин Хаббл

Астроном Эдвин Хаббл – в честь абы кого, целый космический телескоп не назовут!

Итак, вселенная бесконечна, но что такое «Большой Взрыв»?

А 1922 г. советский математик Александр Александрович Фридман уточнил схему мира, нарисованную Эйнштейном. Он доказал, что замкнутая Вселенная Эйнштейна нестабильна. Она неизбежно должна расширяться: радиус конечной Вселенной должен расти, а вместе с ним будут увеличиваться и расстояния между космическими объектами. Расширяющееся пространство замкнутой Вселенной как бы разрежает находящееся внутри нее вещество. Иначе говоря, модель «расширяющейся Вселенной» была создана еще до того, как расширение всей известной системы галактик стало наблюдаемым фактом.

Но именно этот факт и оказался философски неприемлемым. В самом деле, если Вселенная — четырехмерный шар, то этот шар, вероятно, погружен в какое-то четырехмерное пространство. Но «четвертое измерение» долгое время ассоциировалось со всякой мистикой. Оно было излюбленной темой всевозможных спиритов, пытавшихся с помощью «четвертого измерения» объяснить разные «чудеса». Реальная же многовековая практика человечества совершалась и совершается в трехмерном пространстве. Отсюда и сложилось убеждение, что реально лишь пространство трех измерений, а многомерные пространства — не более чем удобная в ряде случаев математическая абстракция.

Психологически очень трудно было отказаться не только от бесконечной в евклидовом пространстве Вселенной, но и от ее вечности. Такую привычную для сознания вечность теория расширяющейся Вселенной явно не гарантировала. Если экстраполировать процесс расширения в прошлое, легко подсчитать, что около 10 млрд. лет назад радиус Вселенной был близок к нулю. Иначе говоря, «всего» 14 млрд. лет назад Вселенная представляла собой очень небольшой по объему, но зато сверхплотный сгусток вещества и энергии.

Надо заметить, что «возраст» Вселенной, т. е. промежуток времени от начала ее расширения до наших дней, по ряду причин определен не вполне точно. Возможно, этот возраст измеряется 18-20 миллиардами лет (оценка американского астронома Сэндиджа) или даже большим сроком. Важно другое: когда-то Вселенная была крошечной и сверхплотной.

Внезапный (и по неизвестным причинам) взрыв, а точнее то, что называют «Большой Взрыв» этого сгустка и положил начало расширению Вселенной. Если же расширение Вселенной будет длиться вечно, миру грозит «растворение в ничто».

Все это казалось явно абсурдным, противоречащим материалистическим представлениям о мире. Не случайно буржуазные идеалисты тотчас ухватились за экстравагантную теорию расширяющейся Вселенной и объявили ее «первовзрыв» актом божественного творения мира.

С тех пор на протяжении трех десятилетий предпринимались попытки объяснить «красное смещение» каким-нибудь физическим процессом, не связанным с принципом Доплера, а значит, и с разбеганием галактик. Ныне большинство астрофизиков считают, что «красное смещение» в спектрах галактик — чисто доплеровский эффект, а следовательно, разбегание галактик — твердо установленный факт.

Строго говоря, в переводе с языка философии и науки на обычный, это звучало так – да, вселенная постоянно расширяется. И да, когда-то очень давно, она была значительно меньше, плотнее и (с сохранением всего того же, что и сейчас объема атомов, молекул, материи и энергии) сжата в непостижимо плотный с нашей точки зрения “клубочек”, который однажды был “развязан” неким не поддающимся осмыслению и описанию событием, которое мы называем “большой взрыв”.

Иллюстрация механизма «Большого Взрыва» - рождение «горячей» и «однородной» Вселенной, её постепенное остывание и формирование галактик и звезд

Иллюстрация механизма «Большого Взрыва» – рождение «горячей» и «однородной» Вселенной, её постепенное остывание и формирование галактик и звезд

Что было после «Большого взрыва»? А что было «до» него..?

Как мы можем говорить про какой-то “большой взрыв”, если возраст Вселенной по самым скромным подсчетам составляет 14 миллиардов лет, а возраст Земли – “всего” 4,5 миллиарда? Как мы можем заглянуть так далеко в прошлое и о чем-то уверенно рассуждать?  Как эволюционировала материя от таинственного «первовзрыва» до состояния, в общих чертах близкого к современному? Можно ли достаточно наглядно представить себе первоначальное сверхплотное состояние Вселенной? Насколько близок к нулю был тогда ее объем и что заключалось внутри этого объема?

Сплошные вопросы! И, к сожалению, у нас (по названным выше причинам, включая возраст Земли) нет никакой возможности “отмотать” время назад и увидеть – как же происходил “большой взрыв”, и что было до него.

Однако, благодаря расчетам и наблюдениям, мы можем приблизительно восстановить хронологию событий.

Представьте себе нашу Вселенную, только … сжатую до размеров одной точки. Всё вещество, что есть сейчас и из которого сделаны планеты, звезды, пылевые облака – вот всё это вещество, только сжатое в точку. Невероятное зрелище, как говорит наука, “высокооднородная среда с необычайно высокой плотностью энергии, температурой и давлением”. С современной точки зрения, такой объем вещества в одной точке, должен был находится в сингулярности, то есть, по простому, “не существовать” с точки зрения обычных законов физики. Но в таком деле, как рождение Вселенной, законы физики отдыхают! Физика, впрочем, даже не пытается этот момент объяснить – на этом этапе царят не физические законы, а практически “волшебство” нам пока недоступное и непостижимое.

И вдруг вся эта “сверхточка” “взрывается” и начинает “разворачиваться”, увеличиваясь в объеме, разлетаясь в высь и в ширь, разреживаясь и … остывая.

  • То что произошло с момента и до 10-43  секунд после Большого взрыва, физика также не объясняет (не потому что нет объяснения, то есть происходит некая “магия”, а потому, что наша наука этого пока объяснить не может – в современных условиях невозможно достичь того состояния плотности и температуры вещества). Температура и плотность вещества Вселенной теперь близки к планковским значениям. По окончании этого этапа происходит великое разделение – гравитационное излучение отделилось от вещества.
  • Приблизительно через 10-42 секунд после момента Большого взрыва фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции и завершился через 10-36 секунд после момента Большого взрыва. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии некоторого времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в электромагнитное излучение.
  • Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия-4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода. После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.

Дальше… дальше уже ничего такого не происходило. Работали привычные нам законы физики, Вселенная расширялась и дальше, возникали звезды и планеты.

И вот тут самое главное:

Необходимо отметить, что на всех стадиях Большого взрыва выполняется так называемый космологический принцип — Вселенная в любой данный момент времени выглядит одинаково для наблюдателя в любой точке пространства. В частности, в любой данный момент во всех точках пространства плотность материи в среднем одна и та же.

То есть Большой взрыв не похож на некий взрыв динамитной шашки в пустом пространстве, когда вещество начинает расширяться из небольшого объёма в окружающую пустоту, образуя сферическое газовое облако с чётким фронтом расширения, за пределами которого — вакуум. Это популярное представление ошибочно.

На самом деле Большой взрыв происходил во всех точках пространства одновременно и синхронно, нельзя указать на какую-либо точку как на центр взрыва, в пространстве нет крупномасштабных градиентов давления и плотности и нет никаких границ или фронтов, отделяющих расширяющееся вещество от пустоты.

Большой взрыв следует представлять как расширение самого пространства вместе с содержащейся в нём материей, которая в среднем в каждой данной точке покоится.

Хронология Большого взрыва (инфографика)

Инфографика хронологии Большого взрыва – время в секундах с начала взрыва, и температура вселенной в (в Кельвинах). Хорошо видно, какие элементы и в какое время сформировались

До каких пор будет продолжаться расширение Вселенной?

Как вы могли заметить, сама теория “Большого взрыва”, далеко не всё объясняет. И хотя на самом деле, проблема не в теории как таковой (мы можем объяснить что-то только с точки зрения законов физики, однако ясно, что в момент “рождения вселенной”, т.е. “взрыва”, законы физики просто…. не работали!), в ней все же есть ряд белых пятен, которые ещё предстоит разобрать ученым ближайшего будущего.

К счастью, основные положения теория “Большого взрыва” обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира» – то есть, хотя мы не можем точно описать, что было в самом-самом начале, мы вполне уверенно можем прогнозировать, как дела будут развиваться дальше.

Так вот, согласно теории Большого взрыва, дальнейшая эволюция Вселенной зависит от средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Современные наблюдательные данные показывают, что средняя плотность в пределах экспериментальной погрешности (доли процента) равна критической.


Использованы источники: Краткая история представлений о Вселенной, Errors in Tired Light Cosmology, Что было до большого взрыва, Вселенная из ничего